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Abstract. IKONOS 1-m panchromatic and 4-m multispectral images were used
to map mangroves in a study site located at Punta Galeta on the Caribbean
coast of Panama. We hypothesized that spectral separability among mangrove
species would be enhanced by taking the object as the basic spatial unit as
opposed to the pixel. Three different classification methods were investigated:
maximum likelihood classification (MLC) at the pixel level, nearest neighbour
(NN) classification at the object level, and a hybrid classification that integrates
the pixel and object-based methods (MLCNN). Specifically for object
segmentation, which is the key step in object-based classification, we developed
a new method to choose the optimal scale parameter with the aid of
Bhattacharya Distance (BD), a well-known index of class separability in
traditional pixel-based classification. A comparison of BD values at the pixel
level and a series of larger scales not only supported our initial hypothesis, but
also helped us to determine an optimal scale at which the segmented objects have
the potential to achieve the best classification accuracy. Among the three
classification methods, MLCNN achieved the best average accuracy of 91.4%.
The merits and restrictions of pixel-based and object-based classification
methods are discussed.

1. Introduction

Mangrove forests are highly productive ecosystems that typically dominate the

intertidal zone of low energy tropical and subtropical coastlines (Lugo and

Snedaker 1974, Kathiresan and Bingham 2001). The constituent species in these

forests are often differentially distributed along the intertidal gradient, forming

zones of differing species composition with distance from the water’s edge.

Mangrove habitats and the organisms they support are of significant ecological and

economic value. At the same time, their health and persistence are seriously
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threatened by coastal development projects and various forms of non-renewable

exploitation (Saenger et al. 1983, Ellison and Farnsworth 1996, Farnsworth and

Ellison 1997). Thus, there is an increasing need to monitor and assess mangrove

forest structure and dynamics, both to gain a better understanding of their basic

biology and to help guide conservation and restoration efforts. The ability to

accurately map mangrove species with the tools of remote sensing would greatly

assist in this effort.
Although remote sensing has been used to map many of the land cover types on

earth, it has not been widely used for mapping mangrove forests. The few studies

that have been conducted have concentrated on distinguishing mangrove from non-

mangrove habitats, without regard to species of mangrove. Among recent research

in this area, Venkataratnam and Thammappa (1993) used Landsat Multispectral

Scanner (MSS) data to map mangroves along the coastline of Andhra Pradesh,

India. Rasolofoharinoro et al. (1998) produced a detailed cartographic inventory of

a mangrove ecosystem in Madagascar based on a classification from Satellite pour

l’Observation de la Terre (SPOT) images (SPOT 1 and 2). Gao (1998) developed a

two-tiered classification scheme based on a SPOT image and applied it to the

mangrove mapping in the Waitemata Harbour of Auckland, New Zealand. This

method was 81.4% accurate in classifying mangrove versus non-mangrove land

cover. Green et al. (1998) compared the suitability of three types of data (SPOT XS,

Landsat TM, CASI) in mapping mangrove species with five different classification

approaches. Gao (1999) conducted a comparative study on mangrove mapping with

SPOT XS and Landsat Thematic Mapper (TM) images at 10, 20, 30 m resolution.

In general, two conclusions can be drawn from the above studies.

1. Accurate discrimination between mangrove and non-mangrove vegetation

was not possible using Landsat MSS and SPOT XS data, while Landsat TM

data appeared to be appropriate for this purpose. Due to the small patch size

of different mangrove species, they cannot be mapped at a resolution coarser

than 30 m.

2. Accurate discrimination among mangrove species was not possible using

either type of satellite data, but was possible using images from the Compact

Airborne Spectrographic Imager (CASI) airborne sensor.

The successful launch of IKONOS 2 by Space Imaging LLC, has provided

higher resolution images of mangrove habitat than previously available, offering

the possibility of enhanced discrimination of cover types. This expectation is

supported by Mumby and Edwards (2002) finding that IKONOS images allowed

significantly higher accuracy than Landsat TM in mapping marine environments.

To the best of our knowledge, IKONOS images have not previously been used for

mapping mangroves. Therefore, it is worthwhile to evaluate how well one can

differentiate mangrove from non-mangrove cover, or distinguish different species of

mangrove.

Most traditional classification approaches are based on statistical analysis of

individual pixels. These approaches are well-suited to images with relatively coarse

spatial resolution. With the availability of Very-High-Resolution (VHR) images, it

is anticipated that the classification accuracy of land cover types will improve

accordingly. However, the land cover types to be classified usually correspond to a

coarser scale. With a finer spatial resolution, the number of detectable sub-class

elements increases as well. The resulting increase in the within-class spectral

variance may make separation of spectrally mixed land cover types more difficult
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(Shaban and Dikshit 2001). Recent research has shown that pixel-based

classification methods are not suitable for the VHR image (Scheiewe et al.

2001). An alternative solution is to incorporate as much information on spatial

neighbourhood properties as possible into the classification process. Object-based
classification has been proposed as a means of incorporating such spatial

information into the classification procedure. This approach is also consistent

with the perspective from the disciplines of geographical or landscape ecology, that

it is preferable to work on a meaningful object representing the true spatial pattern

rather than a uniform pixel (Blaschke and Strobl 2001). Technically, the object-

based methods involve two steps: segmentation and classification. In the

segmentation stage, the major task is to partition the whole image into a series

of closed objects, which coincide with the actual spatial pattern. Detailed reviews of
segmentation methods can be found in Pal and Pal (1993) and Cufi et al. (2002).

‘Region growing’ is among the most commonly used segmentation methods.

This procedure starts with the generation of seed points over the whole scene,

followed by grouping neighbouring pixels into an object under a specific

homogeneity criterion (Kettig and Landgrebe 1976, Lobo 1997, Evans et al.

2002). The homogeneity criterion is a measure of local spectral heterogeneity, which

is defined with a certain choice of ‘spectral closeness’ metric (Evans et al. 2002). For

example, Euclidean distance and Mahalanobis distance are two commonly adopted
metrics (Richards 1986, Tilton 1998). The object keeps growing until its spectral

closeness metric exceeds a predefined break off value. The higher the break off

value, the larger the segmented object will be. In theory, there are unlimited choices

of break off value. Thus, for a specific application, it is highly desirable for the user

to determine an optimal value automatically. Relating this question back to our

mangrove classification, we can solve this problem by finding an optimal break off

value so that the resultant objects yield best classification accuracy.

The research reported here is part of a larger investigation (being conducted by

W. Sousa) of patterns and mechanisms of mangrove forest regeneration on the
Caribbean coast of Panama. The specific goals of this remote sensing study were (i)

to evaluate whether IKONOS images can be used to map different cover types in

the study area, including mangrove canopies of differing species composition, and

(ii) to determine which of three different classification methods provides the best

discrimination: pixel-based, object-based, or a hybrid of these methods. We

hypothesized the spectral separability among different mangrove canopies would be

enhanced by taking the object as the basic unit as opposed to the pixel.

2. Study site and data preparation

2.1. Study site

The study was conducted in mainland mangrove forests near the Smithsonian

Tropical Research Institute’s Galeta Marine Laboratory (9‡24’18@N,

79‡51’48.5@W) at Punta Galeta on the Caribbean coast of Panama, approximately

8 km northeast of the city of Colón.

Three tree species comprise the canopy of the study forests. They are: black

mangrove (Avicennia germinans), white mangrove (Laguncularia racemosa), and red
mangrove (Rhizophora mangle). Red mangrove forms a pure or nearly pure stand at

the seaward fringe. About 10–20 m from the water’s edge, white mangrove joins the

canopy, forming a nearly even mixture with red mangrove in the low intertidal. In

these mixed-species stands, white mangroves reach average heights of 22 m, while

red mangroves average 16 to 18 m in height (W. Sousa, unpublished data). So, the
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crowns of white mangroves tend to be emergent, and therefore more visible in the

satellite image than those of red mangroves, which form a lower sub-canopy. Black

mangrove joins the canopy in the mid-intertidal, creating a mixed canopy of the

three species, and then gradually monopolizes most upper intertidal stands. White

mangrove may disappear completely from the canopy in the upper intertidal, or

occur only as scattered individuals or small stands (W. Sousa, unpublished data).

2.2. Data preparation

Two cloud-free IKONOS images, one panchromatic at 1 m resolution and the

other multispectral at 4 m resolution, were acquired on 13 June 2000 at 3:24 pm

local time (# 2001, Space Imaging LLC, all rights reserved). The sun elevation was

59.1‡ and the sun azimuth was 59.6‡. The image was radiometrically and

geometrically corrected by Space Imaging technicians. With the exclusion of a

terrain factor, it was reported that IKONOS Geo products would display a 15 m

circular error with 90% confidence (CE90). To obtain a higher accuracy, we carried

out another round of geometric correction based on ground control points collected

throughout the entire scene. Some of the points were centres of canopy gaps. The

rest of the control points were located at distinctive positions along a road and

bridge. Field global positioning system (GPS) readings were input to conduct

geometric correction. This correction procedure achieved sub-meter accuracy. Pixels

in the image are recorded in 11 bits. A 242162229 sub-image was extracted from

the whole scene to cover our study sites. For the purpose of classification, the 4-m

multispectral image was resampled to 1 m and stacked with the 1-m panchromatic

image, resulting in a five channel image at a spatial resolution of 1 m.

3. Methods

3.1. Maximum likelihood classification (MLC) at the pixel level

Previous research has indicated that maximum likelihood classification is the

most effective method in classifying mangroves with traditional satellite remote

sensing data (Green et al. 1998, Gao 1999). Therefore, we adopted this method as a

starting point for our analysis. Since 1988, one of us (W. Sousa) has made regular

visits to the study area, mapping a variety of forest features with GPS, and

establishing and monitoring permanent plots, transects, and long-term field

experiments across the study area. Based on this extensive field experience, a

total of seven land cover types were chosen for the classification, including three

different types of mangrove canopy, rainforest, gap, lagoon, and road. Since the

goal of our study was to evaluate different methods for distinguishing the species

composition of mangrove forest canopy in VHR satellite imagery, we focused our

efforts on the three most common canopy types in the study area. These are (1)

pure red mangrove canopy, typical of fringing stands at the water’s edge, (2) low to

mid-intertidal, mixed canopy of red and white mangroves with whites usually

emergent, as described above, and (3) pure black mangrove canopy typical of many

upper intertidal sites. Henceforth, we will refer to these three canopy types by the

short-hand titles: red, white, or black canopy. Around the time of image

acquisition, a detailed field survey of each representative cover type was conducted.

Based on this survey, we delineated a separate set of training and test samples for

the purpose of classification.

As stated earlier, we hypothesized that spectral separability among mangrove

canopies would be enhanced by taking the object as the basic unit as opposed to the
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pixel. To test this hypothesis, we began with an exploration of the spectral

separability among all seven cover types at the pixel level. We chose Bhattacharya

Distance (BD) to measure between-class separability (Richards 1986). Previously,

BD was mainly used to select an optimum subset of bands or features for the

classification. BD was calculated between two classes at a time by using their means

and covariance matrices with the assumption that the two classes are in Gaussian

distribution. A high BD value means that two classes are spectrally separable and

vice versa. As a result, BD can serve as an indicator to the final performance of the

supervised classification. The larger the BD value is, the better the final

classification will be. The equation we used to compute BD is described in the

PCI user manual (PCI 2001).

3.2. Object-based classification

As described in §1, object-based classification began with a segmentation of the

whole scene into closed objects. In this study, we applied the segmentation method

embedded in eCognition 3.0 software (# Definiens Imaging). This method can be a

described as a region merging technique. Details can be found in Baatz and Schape

(1999). Briefly, this method generates a sequence of seed points from a dither matrix

produced by a binary counter. Then starting from each seed point, at each step, a

pair of neighbouring image objects will be merged into one large object. The

merging decision is made with local homogeneity criteria. The homogeneity criteria

are defined by equation (1):

f ~
Xi~n

i~1

Wi nMergesMerge{ nObj1sObj1znObj2sObj2

� �� �
ð1Þ

where n is the number of bands and Wi is the weight for the current band, nMerge,

nObj1 and nObj2 are respectively the number of pixels within merged object, initial

object 1, and initial object 2. sMerge, sObj1, sObj2 are the variances of merged object,

initial object 1, and initial object 2. f is the derived local tone heterogeneity

weighted by the size of image objects and summed over n image bands. In this

study, an equal weight value (one) was assigned to all the Wi.

To stop the merging procedure, f must exceed a break off value, which has to be

determined beforehand. A small break off value will give rise to a small object size

on average, while a large break off value will lead to a big object size on average.

Due to this property, the break off value is termed as ‘scale parameter’ in the

context of this method. As a result, the scale parameter is an abstract value that

determines the maximum possible change of heterogeneity caused by fusing several

objects.

In principle, there are unlimited choices of scale parameters. The final decision

of scale parameter is often made by an interpreter based on his or her visual

inspection of the image, rather than quantitative criteria. Nevertheless, in the

classification situation, it is very hard for the interpreter to tell at which scale

parameter the classification accuracy is maximized. It is also very time consuming

to conduct classification with all the possible scale parameters. Therefore, we

developed a method to choose the optimal scale parameter specific to our mangrove

canopy classification purposes. This method is described in the following section.
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3.3. A new method to choose an optimal scale parameter in segmenting

homogeneous objects

BD has mainly been used in analysing class separability to aid selection of

optimum bands. However, in this study, we decided to apply this measure in

searching for the optimal scale parameter. To be consistent, we preserved the same

set of training samples used in the maximum likelihood classification. Taking the

training samples as masks, we derived a new image on which training pixels still

kept their spectral information while other pixels were assigned a zero value. Then

we segmented the new image at various candidate scale parameters with the method

introduced in §3.2. At this stage, each object becomes the basic training unit rather

than an individual pixel, and correspondingly, the mean grey value of each object

was calculated to represent this object’s spectral information. Based on these mean

spectral values, we derived the pair-wise BD among seven covers at each scale. As a

result, the scale at which the BD reaches its maximum was considered the optimal

scale and therefore used in the segmentation for the whole scene.

3.4. Nearest-neighbour (NN) classification at object level

For the image objects obtained through segmentation at the optimal scale, we

applied the nearest neighbour classifier based on the same set of training samples

that were applied in MLC. As a result, each object was assigned to one of the seven

cover types. The nearest neighbour classifier functions in the following fashion.

First, a feature space was defined (i.e. in this study, the five image channels

constitute a five-dimensional feature space) in which each image object becomes a

point. Since the training samples of each class occupy a spatially clustered location,

the final assignment of an object will go to the class that has the sample nearest to

the object in the given feature space. In this manner, a thematic map was generated

and classification accuracy using pixels as the spatial unit was compared to that

using maximum likelihood classification on the same test set.

3.5. Integrating pixel and object-based (MLCNN) methods

Based on our experience with MLC and NN, we hypothesized that the

combination of a pixel and object-based method would achieve the best

classification accuracy in this mangrove study. To test this hypothesis, we designed

an integrated classification scheme. With the analysis of the spectral separability

conducted at the pixel and object levels, we first performed maximum likelihood

classification at the pixel level by merging the spectrally inseparable classes to one

class. Those classes with good separability were then masked out and only

spectrally mixed classes were further investigated with the object-based classifica-

tion. If our hypothesis is true, i.e. that the spectral separability among mangrove

canopies will be enhanced at a certain object level, then we can expect to achieve a

more accurate classification among these mixed classes with the object-based

classification. To evaluate this hypothesis, we combined the two classification

results at the pixel and object level to produce the final thematic map.

4. Results
4.1. Spectral separability

Theoretically, BD ranges from a minimum of 0 to a maximum of 2. A rule of

thumb for interpreting a BD value is as follows. A BD value less than 1 indicates a

very poor separability while a BD value less than 1.9 and larger than 1 indicates
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that two classes can be separable to some extent. Only when the BD value is larger

than 1.9 can we say a very good separability exists between two classes (PCI 2001).

Table 1 lists the pairwise BD calculated from training samples at the pixel level.

Previous experience indicates that it is difficult to distinguish rainforest vegetation

from the fringing coastal mangroves using Landsat MSS and aerial photography

(Kay et al. 1991). Our exploration confirms this difficulty. BD between rainforests

and red mangrove canopy equals 0.8 and BD between rainforests and black

mangrove canopy equals 1.27. An even poorer spectral separability (BD~0.66) was

found between red mangrove and black mangrove canopies. White mangrove

canopy, gap, and lagoon exhibit a good degree of separation from other classes.

Although road has a poor separability with the three mangrove canopy types and

rainforests, it is not a concern for this specific application. Consequently, when we

began to select training samples for the classification, we tended to choose more

training samples from red mangrove canopy, black mangrove canopy, and

rainforest as a strategy to compensate for their poor separability.

We used the method described in §3.2 and §3.3 to explore the object-level

spectral separability of the seven cover classes at different spatial scales, segmenting

the image at scale parameters of 1, 5, 10, 15, 20, and 25. There are two reasons why

we did not explore a scale value over 25. First, when a scale parameter exceeds 25,

the generated object size in red mangrove canopy tends to become larger than what

was observed in the field. Second, with the same set of training samples, scale value

over 25 left an insufficient number of objects to use in the BD calculation. When

the scale parameter is 1, the average object size is 1.5, which means each derived

object only contains 1.5 pixels. We examined objects generated at this scale and

found they were very similar to the original pixel level, thus, we used the BD

calculated at the pixel-level from the original image for the spectral separation at

this scale. For the other five scales, we calculated a separate set of the BD using the

mean spectral values of objects generated at each scale (table 2).
Our object-level analysis focused on the three pairs of land cover types that

proved to be the most difficult to separate at the pixel scale: red mangrove versus

black mangrove canopies, red mangrove canopy versus rainforests, as well as black

mangrove canopy versus rainforests. Figure 1 illustrates that other than scales 5 and

10, where BD value is lower than that at the pixel level scales 15, 20, 25 shows a

steady increase of BD value for all three pairs of classes and they all outperform the

BD value at the pixel level. This result supported our hypothesis that the spectral

separability among some mangrove species canopies is enhanced at a certain object

level.

Table 1. Bhattacharya Distance at the pixel level.

Category 1 2 3 4 5 6 7

1. Red canopy 0
2. Black canopy 0.66 0
3. White canopy 1.91 1.74 0
4. Gap 1.81 1.57 1.77 0
5. Lagoon 2.00 2.00 2.00 1.94 0
6. Rainforest 0.80 1.27 1.92 1.83 2.00 0
7. Road 1.03 1.04 1.24 1.00 1.97 0.71 0
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Table 2. Bhattacharya Distance at different scales.

(a) Scale parameter~5.

Category 1 2 3 4 5 6 7

1. Red canopy 0
2. Black canopy 0.59 0
3. White canopy 1.85 1.63 0
4. Gap 1.64 1.41 1.54 0
5. Lagoon 2.00 2.00 2.00 1.98 0
6. Rainforest 0.75 1.24 1.89 1.75 2.00 0
7. Road 1.98 1.99 1.85 1.96 2.00 1.91 0

(b) Scale parameter~10.

Category 1 2 3 4 5 6 7

1. Red canopy 0
2. Black canopy 0.61 0
3. White canopy 1.87 1.73 0
4. Gap 2.00 2.00 2.00 0
5. Lagoon 2.00 2.00 2.00 2.00 0
6. Rainforest 0.80 1.24 1.92 2.00 2.00 0
7. Road 1.99 2.00 1.89 2.00 2.00 1.94 0

(c) Scale parameter~15.

Category 1 2 3 4 5 6 7

1. Red canopy 0
2. Black canopy 0.66 0.00
3. White canopy 1.90 1.70 0.00
4. Gap 1.71 1.44 1.66 0.00
5. Lagoon 2.00 2.00 2.00 1.98 0.00
6. Rainforest 0.86 1.24 1.93 1.74 2.00 0.00
7. Road 2.00 2.00 1.92 1.97 2.00 1.96 0

(d) Scale parameter~20.

Category 1 2 3 4 5 6 7

1. Red canopy 0
2. Black canopy 0.82 0
3. White canopy 1.94 1.81 0
4. Gap 1.74 1.48 1.77 0
5. Lagoon 2.00 2.00 2.00 1.98 0
6. Rainforest 0.88 1.28 1.95 1.73 2.00 0
7. Road 2.00 2.00 1.97 1.99 2.00 1.99 0

(e) Scale parameter~25.

Category 1 2 3 4 5 6 7

1. Red canopy 0
2. Black canopy 1.04 0 1.90 1.58 2.00 1.35
3. White canopy 1.97 1.90 0 1.85 2.00 1.97
4. Gap 1.79 1.58 1.85 0 1.98 1.75
5. Lagoon 2.00 2.00 2.00 1.98 0 2.00
6. Rainforest 1.00 1.35 1.97 1.75 2.00 0
7. Road 2.00 2.00 1.98 1.97 2.00 1.99 0
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4.2. Classification accuracy

Classification accuracy was separately assessed based on the same testing set for

the three classification methods; the error matrices are presented in tables 3–5.

MLC yields an average accuracy of 88.9% over the seven cover types (table 3).

Consistent with the prediction of spectral separability, red mangrove canopy was

classified with the lowest accuracy, only 71.3%. Classification accuracy is also

modest for black mangrove canopy and rainforests with an average accuracy value

of 81.8% and 81.0% respectively.

NN produces a high k value (0.94) although with a lower average accuracy

(80.4%) compared to that of MLC (table 4). This is because the three cover types

that were poorly classified by MLC (red mangrove canopy, black mangrove

canopy, and rainforest) all increased in classification accuracy. The accuracy for red

mangrove canopy increased from 71.3% in MLC to 77.5% in NN. Black mangrove

canopy classification gained an additional 8% accuracy with NN over that with

MLC. Rainforest performed even better, improving from 81% to 100%. Given the

larger training samples in these three classes compared with other classes, the k

value increased by 0.21. However, the drop in the average accuracy is due to a

sharp decrease in accuracy for white mangrove canopy from 97.9% to 21.9%. Fifty-

seven per cent of pixels classified as white mangrove canopy from NN are actually

rainforest and 21.1% are black mangrove canopy, according to the reference. This

low accuracy can be partly attributed to the relatively smaller number of samples of

white mangrove canopy compared with that of black mangrove and rainforest. We

also conducted a visual inspection of the segmented objects. We paid special

attention to the transition of the two different cover types because if the segmented

object contains pixels from two different cover types, there is no other way to

correct this error, given a single object has become the basic unit, and thus,

undividable. Our results did show that in the fringe of red mangroves and in the

white mangrove canopy there are some incorrectly segmented objects, which were

actually mixed objects containing pixels from both cover types. The classification of

these mixed objects caused an error in the edge of two cover types.

With MLCNN, we derived the highest average accuracy (91.4%) among the

three methods. This is because white mangrove canopy, gap, lagoon and road

Figure 1. Changes of three pairwise BD values over six scale parameters.
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retained the high accuracy achieved with MLC, while red and black mangrove

canopies benefited from the NN method. The accuracy for rainforest went up from

81% to 86.4%. This is because rainforest has some portions of spectral overlap with

red and black mangrove canopies, while the merged class based on red and black

mangrove canopies produced a better spectral separation with rainforest. The

relatively lower k value for MLCNN compared with NN was caused by the

decreasing accuracy of rainforests, which had larger training samples as opposed to

other classes. Figure 2 provides a graphic comparison of the classification accuracy

with the three methods for each cover type. Figure 3 provides the classification map

with MLCNN.

Table 3. Error matrix of maximum likelihood classification at the pixel level (k~0.730).

Category 1 2 3 4 5 6 7 Sum accuracy (%)

1. Red canopy 71.3 18.5 0.5 0.1 0 9.7 0 71
2. Black canopy 13.3 81.8 0.2 1.1 0 3.6 0 82
3. White canopy 0 0.8 97.9 0 0 1.2 0 98
4. Gap 0.7 2.6 0 95.2 0.7 0.7 0 95
5. Lagoon 0 0 0 3.9 96.1 0 0 96
6. Rainforest 14.1 3.4 0.7 0.8 0 81 0 81
7. Road 0 0 1.3 0 0 0 98.7 99
Accuracy (%) 72 76 97 94 99 84 100 88.9

Table 4. Error matrix of nearest neighbour classification at the object (scale~25) level
(k~0.94).

Category 1 2 3 4 5 6 7 Sum accuracy (%)

1. Red canopy 77.5 11.6 0 0 0 10.9 0 78
2. Black canopy 3.1 89.8 0 0 0 7.2 0 90
3. White canopy 0 21.1 21.9 0 0 57 0 22
4. Gap 0 22.7 0 76.6 0 0.7 0 77
5. Lagoon 0 0 0 2.9 97.1 0 0 97
6. Rainforest 0 0 0 0 0 100 0 100
7. Road 0 0 0 0 0 0 100 100
Accuracy (%) 96 62 100 96 100 57 100 80.4

Table 5. Error matrix of integrated classification (k~0.81).

Category 1 2 3 4 5 6 7 Sum accuracy (%)

1. Red canopy 73.7 7.7 0.5 0.1 0 18 0 74
2. Black canopy 2.2 92.4 0.2 1.1 0 4.1 0 92
3. White canopy 0.8 0 97.9 0 0 1.2 0 98
4. Gap 0.7 3 0 94.8 0.7 0.7 0 95
5. Lagoon 0 0 0 3.9 96.1 0 0 96
6. Rainforest 6.5 5.5 0.7 0.8 0 86.4 0 86
7. Road 0 0 1.3 0 0 0 98.7 99
Accuracy (%) 88 85 97 94 99 78 100 91.4

5664 L. Wang et al.



5. Discussion

Segmentation is critical to object-based classification. Usually, the user has to

decide the specific scale at which to segment an image into objects. However, this

search process can be very subjective because it is highly dependent on the inter-

preter’s experience. We used the BD as a quantitative index to guide us in choosing

the optimal scale parameter for segmentation. Using this index, we confirmed our

Figure 2. Comparison of classification accuracy for each cover type.

Figure 3. Classification with MLCNN.
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hypothesis that spectral separability between some mangrove species canopies can

be enhanced at a certain object level as opposed to the pixel level. Second, we used

the index as a means of choosing the optimal scale parameter among all possible

values. The optimal scale was defined as that which maximized BD. This approach
should make object-based classification more efficient and effective.

We found that there were advantages and disadvantages to both the pixel and

object-based methods. The pixel-based method retains the rich spectral information

contained in the original image and has the finest spatial scale (1 m in this study),

but this fine spatial scale does not result in a good differentiation between red

mangrove and black mangrove canopies. On the other hand, the object-based

method generalizes the spectral information in a spatial neighbour, defined by the

local homogeneity criterion. This generalization exaggerates the spectral distinction
between spectrally mixed classes, and therefore improves the efficiency of

classification. Nevertheless, this generalization also has the risk of incorporating

pixels from different classes into one object. Since the object is the smallest unit in

the subsequent classification process, the classification accuracy would be

decreased. With the segmentation method used in this study, we found it is

impossible to ensure that every object derived from the homogeneity criteria

contained only one class of pixels. This mixed-object effect will get even worse

along the edge or borders of two cover types. Therefore, we adopted an integration
of the pixel and object-based methods. In this way, only two difficult-to-separate

covers (red mangrove and black mangrove canopies) were input to the object-based

method while other cover types were resolved with the pixel-based classification.

Since at our study sites, pure stands of red mangrove and black mangrove are

spatially separated by a white mangrove canopy (i.e. mixed red/white stands with a

largely white overstory) and not directly connected in most places, the mixed-object

effect at the edge is largely minimized.

One drawback of our method relates to the selection of training samples. One
must use polygons of a relatively large size so that in examining the BD at different

scales there will be a sufficient number of objects to serve as training samples.

There is a growing consensus in the field of remote sensing that classification

with IKONOS image should use as much spatial information as possible. The

region merging segmentation used in this study can be treated as one way to

integrate spatial information in the classification. There are still other possible ways

to incorporate spatial information, for example, texture and contextual methods. In

this study, we did not apply these methods. It will be very valuable to investigate
their contribution in the classification of our study site. A comparison of various

methods incorporating spatial information will provide guidance in selecting

appropriate methods for many other applications.

Mangrove forests provide a number of important ecosystem services including

protection from storm surge, trapping of sediment and pollutants in terrestrial

runoff, and serving as nursery habitat for numerous commercially important species

of fish and crustaceans. These forests are increasingly threatened by coastal

development, destructive forms of resource extraction, and sea-level rise associated
with climate change. Many mangrove forests cannot be easily accessed for regular

on-site monitoring, so the ability to remotely detect and map changes in the cover

of different mangrove forest types is critical to management efforts. Mapping

mangrove species distributions using conventional remote sensing imagery has

proven very challenging due to the low spatial resolution and absence of spectral

discrimination. With the emergence of VHR satellite imagery, it was expected that
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species-level discrimination and mapping would be possible. However, to date, very

few studies have critically evaluated this potential use of VHR imagery in any

habitat. To our knowledge, ours is the first study to examine this question in

mangrove systems. Mumby and Edwards (2002) evaluated the ability of IKONOS

imagery to discriminate tropical marine environments (reefs and seagrass beds) in

the Turks and Caicos Islands (British Virgin Islands). They found that habitats

could be discriminated at a coarse scale (reef versus seagrass), but not at the finer

scale of species-assemblages within a habitat. In this paper, we report a method for

effectively discriminating different assemblages of mangrove species from IKONOS

imagery. Specifically, we demonstrate that an integrated pixel- and object-based

classification of IKONOS imagery can provide a valuable tool for mapping

mangrove forest species composition, a capability that should be a great value to

resource managers.

6. Conclusions

A new method to choose an optimal scale parameter in segmentation, with the

criterion that Bhattacharya Distance is maximized, has been proposed and applied

to a defined region-merging segmentation. Three classification methods: MLC, NN

and MLCNN were applied to the mapping of three different mangrove canopy

types and four other cover types at our study sites on the Caribbean coast of

Panama. Results indicate IKONOS images can be used to map mangroves canopies

and non-mangrove cover in our study sites with an average accuracy of 91.4% using

the MLCNN method. At the optimal scale, the classification of two spectrally

mixed classes, red mangrove and black mangrove canopies, was improved by

object-based classification compared to pixel-based classification. The integrated

classification method MLCNN outperformed the other two methods (MLC and

NN) in this study. Further evaluation is required to demonstrate that our method

gives a consistent result at other study sites.

Acknowledgments
We thank two anonymous reviewers for their instructive comments on the

manuscript. The study was supported by grants to W. Sousa from the National

Science Foundation (DEB-9221074, DEB-9615887 and DEB-0108146), the Uni-

versity of California, Berkeley Committee for Research, the University of

California, Berkeley College of Letters and Sciences Faculty Research Fund for

the Biological Sciences, and the Miller Institute for Basic Research in Science. We

are grateful to the many undergraduate and graduate student field assistants who

helped with the sampling studies that ground-truthed our image analysis.

We thank the Smithsonian Tropical Research Institute for excellent logistical

support and for allowing us to use the Galeta Marine Laboratory. The field portion

of the project was conducted under research permits from Panama’s Instituto

Nacional de Recursos Naturales Renovables and Autoridad Nacional del

Ambiente. We especially thank the Republic of Panama for preserving their

forests and making them available for study.

References

BAATZ, M., and SCHAPE, A., 1999, Object-oriented and multi-scale image analysis in
semantic networks. Proceedings of the 2nd International Symposium on Operation-
alization of Remote Sensing, 16–20 August 1999 (Enschede, The Netherlands: ITC).

Mapping mangroves with IKONOS imagery 5667



BLASCHKE, T., and STROBL, J., 2001, What’s wrong with pixels? Some recent developments
interfacing remote sensing and GIS. GeoBIT/GIS, 6, 12–17.

CUFI, X., MUNOZ, X., FREIXENET, J., and MARTI, J., 2002, A review of image segmentation
techniques integrating region and boundary information. Advances in Imaging and
Electron Physics, 120, 1–39.

ELLISON, A. M., and FARNSWORTH, E. J., 1996, Anthropogenic disturbance of Caribbean
mangrove ecosystems: past impacts, present trends, and future predictions.
Biotropica, 4, 549–565.

EVANS, C., JONES, R., SVALBE, I., and BERMAN, M., 2002, Segmenting Multispectral
Landsat TM images into field units. IEEE Transactions on Geoscience and Remote
Sensing, 5, 1054–1064.

FARNSWORTH, E. J., and ELLISON, A. M., 1997, The global conservation status of
mangroves. Ambio, 6, 328–334.

GAO, J., 1998, A hybrid method toward accurate mapping of mangroves in a marginal habitat
from SPOT Multispectral data. International Journal of Remote Sensing, 10, 1887–1899.

GAO, J., 1999, A comparative study on spatial and spectral resolutions of satellite data in
mapping mangrove forests. International Journal of Remote Sensing, 14, 2823–2833.

GREEN, E. P., CLARK, C. D., MUMBY, P. J., EDWARDS, A. J., and ELLIS, A. C., 1998,
Remote sensing techniques for mangrove mapping. International Journal of Remote
Sensing, 5, 935–956.

KATHIRESAN, K., and BINGHAM, B. L., 2001, Biology of mangroves and mangrove
ecosystems. Advances in Marine Biology, 40, 81–251.

KAY, R. J., HICK, P. T., and HOUGHTON, H. J., 1991, Remote Sensing of Kimberley
rainforests. In Kimberley Rainforests, edited by N. L. McKenzie, R. B. Johnston, and
P. O. Kendrick (Chipping Norton: Surrey Beatty and Sons), pp. 41–51.

KETTIG, R. L., and LANDGREBE, D. A., 1976, Classification of multispectral image data by
extraction and classification of homogeneous objects. IEEE Transactions on
Geoscience and Remote Sensing, 1, 19–26.

LOBO, A., 1997, Image segmentation and discriminant analysis for the identification of land
cover units in ecology. IEEE Transactions on Geoscience and Remote Sensing, 5,
1136–1145.

LUGO, A. E., and SNEDAKER, S. C., 1974, The ecology of mangroves. Annual Review of
Ecology and Systematics, 5, 39–64.

MUMBY, P. J., and EDWARDS, A. J., 2002, Mapping marine environments with IKONOS
imagery: enhanced spatial resolution can deliver greater thematic accuracy. Remote
Sensing of Environment, 2–3, 248–257.

PAL, N. R., and PAL, S. K., 1993, A review on image segmentation techniques. Pattern
Recognition, 9, 1277–1294.

PCI, 2001, PCI Geomatics 8.2 User Manual, Part: signature separability, Ontario, Canada,
http://www.Pcigeomatics.com/.

RASOLOFOHARINORO, M., BLASCO, F., BELLAN, M. F., AIZPURU, M., GAUQUELIN, T., and
DENIS, J., 1998, A remote sensing based methodology for mangrove studies in
Madagascar. International Journal of Remote Sensing, 10, 1873–1886.

RICHARDS, J. A., 1986, Remote Sensing Digital Image Analysis: An introduction (Berlin:
Springer-Verlag).

SAENGER, P., HEGERL, E., and DAVIS, J., 1983, Global status of mangrove ecosystems. The
Environmentalist, 3, 1–88.

SCHEIEWE, J., TUFTE, L., and EHLERS, M., 2001, Potential and problems of multi-scale
segmentation methods in remote sensing. GeoBIT/GIS, 6, 34–39.

SHABAN, M. A., and DIKSHIT, O., 2001, Improvement of classification in urban areas by the
use of textural features: the case study of Lucknow City, Uttar Pradesh. International
Journal of Remote Sensing, 4, 565–593.

TILTON, J. C., 1998, Image segmentation by region growing and spectral clustering with a
natural convergence criterion. Proceedings of the 1998 International Geoscience
Remote Sensing Symposium (IGARSS’98), 6–10 July 1998 (Seattle, WA), pp. 1766–
1768.

VENKATARATNAM, L., and THAMMAPPA, S. S., 1993, Mapping and monitoring areas under
prawn farming. Interface: A Bulletin from the NRSA Data Centre, 4, 4–7.

5668 Mapping mangroves with IKONOS imagery


